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Abstract 
A new theoretical approach is presented for solving the master equation of nuclear 
preequilibrium states, based on an explicitly integrated method. Earlier ad hoc 
hypothesis was proposed to follow mathematical derivation of the master equation 
reasonably, thus providing an explicit method to derive the dependence of probability 
distributions of exciton levels occupation. Few theoretical comparisons were made, 
based on approximation formulae of the present solution. 

 

1. Introduction 

The preequilibrium models represent a group of models that try to describe the 

intermediate nuclear reactions based on the contribution weight of many statistical 

states in each reaction channel. A model with significance is the exciton model [1-4],  

which depicts intermediate stages of nuclear reactions based on excitations occurring 

due to development of residual two-body interaction. The exciton model implies that 

a hypothetically and temporarily created entity, the exciton, a notion for particle-hole 

(p,h) pair, is responsible of this development. The idea was first described by Griffin 

[4]. Intermediate states of interaction will ensure that the number of excitons n 

(=p+h) distinguishing each stage in the equilibration process will change by an even 

integer, that is 2±=∆n  or zero. At every stage in this course, equilibration is specified 

by an n and excitation energy E, both of which will affect a certain decay probability

W . Transition between adjacent stages is characterized by the transition rate, ba−λ  

between stages a and b as given by Fermi rule, depending on  the matrix element of 

the interaction [2]. 

 During exciton model calculations, the master equation ME, will describe the 

time evolution of occupation probability of each stage based on a first order 

differential equation. It expresses various states development at a given time. In [1,5] 

a comprehensive review and solution methods of ME description was given. ME in 
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terms of one-component system, when protons and neutrons are approximated to 

have the same behavioral characteristics, is given as [6]  
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where P(n,E,t) is the occupation probability of the nth stage with E at t, and −+ λλ , are 

adjacent transition rates with resp. The mean lifetime of this stage nτ  is 
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and W(n,E) is the exciton rate of decay to the continuum. The total lifetime for each 

state is given by 
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 For two-component system of reaction where neutrons are distinguished from 

protons, the ME is given as [5] 
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where νπ nn , are the exciton numbers for protons and neutrons, respectively, 

νπ nnn +=  and ),,( thNP π of νπ nn , number of excitons. N is a function of νπ nn ,  

number as: ( ) ovv nNhphpn ++=+++= 12ππ , and no is the initial exciton number. h 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013                                                               158 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

and p represent hole and particle numbers, and the subscripts νπ , represent proton and 

neutron types, respectively. The decay rate ),( πhNW is defined as [7], 

),5(),(),( ∑=
β

πβπ
εdhNWhNW  

and ),( πhNW  is the decay rate of a particle of type β  to the continuum with energy ε  

from the state described by N and πh . This problem is of major significance in 

preequilibrium models, specially the  exciton model [1TU8-10U1T]. 

In the present work we provide a note on the solution of eq.(4), which is applied 

for a ne solution of the two-component ME.  

 

2. Theory: The Integro-Differential Master Equation  
If one examines eq.(4), it can be shown that it is equivalent to, 
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where an assumption was made that various population probabilities are, 
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, and the prime (magnified acute accent) sign is 

added in order to distinguish these (successive) probabilities from (initial) P, the 

prime here does not mean a derivative operation. Eq.(6) is ME rewritten in a compact 

form. Noting that /
jλ 's are not functions of t, neither is W, then we'll further define the 

following, 

),7()()(
10

1
∑
=

=
j

jj
tPtB λ  

),8())((
10

1

/ tAWA
j

j
≠+= ∑

=

λ  

then eq.(6) can simply be turned to, 
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Let's define, vutP =)(/ , where u and v are partial functions of P, and let us assume a 

general form of )exp( tAv −= , this definition of v implies that ,0=+ Av
dt
dv thus, 

 constant)0( ==== kPtP joj  and one may write, 
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after few steps,  
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where )0(// == tPPo . This is the integrated form of ME. The exponential function was 

added here to describe a general behavior of nuclear decay. It is consistent with the 

results of the simpler one-component ME system found in [1].   

 

2.1. The Solution: 

The importance of eq.(12) is seen here because it was given in a form that can be 

solved analytically. In previous methods of ME solution, no direct expression for the 

probability distribution P/(t) was given, but instead, only the integral form of P/(t) is 

usually reached that is similar to eq.(12) -see [1] for detailed survey on solution 

methods of ME.  

Let us try to rewrite eq.(6) again as, 
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where kj,λ is transition rate from the state j to the state k and Sj in the summation 

limit is the number of states surrounding the jth state, without including the jth state 

itself, because there is no transition from the jth state to itself. Note that here the index 

k has a similar meaning given by Herman et al.[6] for index representation, 
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k oo , and it leads to the scheme shown in Fig.(1). 
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Fig.(1). A scheme representing the transition from various states. 

 

To put eq.(13) in general form let us define jk∆ as, 
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where jkδ is the usual Kronecker delta function. Obviously, 
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Then eq.(13) can be safely written as follows, 
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As before we put the definitions of Bk and Ak as follows, 
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here Sj represents all the states surrounding the jth state with no restrictions, because 

we added the analytical function kj∆ which forces this conditions as a selection rule 

since 0=∆kj when k = j.  Eq.(13) is now equivalent to, 
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and eq.(12) becomes, 
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Once again, the functions Ak is not a function of time. t/ also is used for integration 

purpose only. The solution of the explicitly-integrated form of the master equation is 

given below. To integrate eq.(19) let's define part of the integral as,
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Then after few steps,  
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which represents the explicit solution of ME. The th
 stat is presented to differ from 

the jth one, from defining jjj

S

jjj

S

j WAPB
jj

+∆=∆= ∑∑
==







,
1

,
1

and λλ . Eq.(21) was 

derived without approximation. Apparently, the first difficulty faced is the 

integrations of T’s in the second and third terms.  
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2.2. Approximations 

However, one may apply some approximations at this point because of the significant 

and specific shape of eq.(21). As a first approximation let the equilibration time teq. 

be long enough so that the exponentials with negative exponents fall fast with time, 

and W are not significant at each stage, and let the mean lifetimes of adjacent stages 

be almost equal, i.e., jTT ≈


 and 0)exp( ≈− tAW kj . Then ),exp( tAP
A

B
P

kok
k

j

k
−+=  thus 

jk PP ∝ . This means that the occupation probability of the state k relates to all 

occupation probabilities of the surrounding  jth states because every kth state is 

actually a newly born daughter and a mother of the surrounding states at the same 

time which is the idea of detailed balance behind ME. The proportionality above is 

therefore an image taken from eq.(5).  

At small values of time, then if one accepts the approximation 

1,, ≈




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
+∆∆ ∑∑ jkjjkkjjk Wλλ which means that W is much smaller (in 

magnitude) than the sum of transition rates then one can have,
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3. Discussions and Conclusion  

The physical interpretation of eq.(13) ensures that for stage with k=1 (first stage), the 

following approximation holds, 0)exp()exp( /
1

/
11

/

≅− ∫ dtBtAtA
t

because the first stage 

mainly gives to other stages, its chance to receive from other stages is almost zero. 

Thus, )exp(
111
tAPP

o
−≅ which is very similar to the well-known nuclear decay 

)exp( tNN o λ−= , noting that in here ∑=
j

jA λ . Therefore we choose the expression

)exp( tAP kok − rather than okP  only. One should be careful how to apply and use the 
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approximation above because we have, )exp(constant)exp( 111,1

3

1
1 tAPtA jjj

j
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βλ

where B≠β .Thus we'll have, 
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Now if we take the time derivative for both sides of eq.(22) then, 
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and from this we have, 
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and clearly this equation holds if ( j
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1 )=0, 01, =jλ , or j=1; all of which will 

logically lead to, ( )only3and2),exp(
1

=−= jtAPP
ojj

which is the exact form of 

eq.(24) for j=1. Eq.(21) will lead to the solution of all stages with the same form, i.e.,  

will give a solution of the type, ,)exp(
1
tAPP

ojj
−= for all values of  j and also it reveals 

that vutP =)(/
 actually reduced to vtP =)(/ , and this isn't quite efficient as a full 

solution, but it is an approximation. Therefore eq.(21) must be handled with care as 

being for the case with j=1 only because is not valid for all stages of the 

preequilibrium reaction, but the more reasonable form, eq.(19) is always valid which 

is a useful relation that describes the population probability of the kth state is the same 

of the jth state plus the initial population of the same kth state, which decreases 

exponentially with time t. Therefore, the asymptotic behavior of the kth occupation 

probability will directly be as jk PP = and this is the situation that describes the 

equilibration condition.  

A third point seen from the above eq.(21) is that, if one assumed that initially Pj 

= 0,  which means that all surrounding states are empty. Then  ,)exp()0( tAtPP
kkk

−==  
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and this again is the well-known decay law of any excited equilibrated, or compound 

nucleus. In the case of Pj = 0 then we will have no jth states, therefore there will be no 

transition rates from or to these states and we must set all jλ  to zero, i.e., we will 

have Ak = Wk only. This leads immediately to have a solution form as 

,)exp()0( tWtPP
kkk

−== simply, if we labeled W by λ, and Pk(t=0) by Po, then we write 

)exp(0 tPP λ−= , the natural radioactive decay law. 

To compare with earlier ad hoc hypothesis, Griffin [4] put the following formula -the 

same symbols are used as found in Ref.4 for convenience,  
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where )(Enρ is the density of states with exciton number n and energy E, xn f  is the 

emission ratio of a particle of type x, )(Ecλ is the decay rate to the continuum, i.e., 

W=λ , and .)1(
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In this paper we've tried to find an analytical 

reason behind this assumption. Comparing Blann's [11] result in particular  
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a general analogy is seen, as both have ratio of transition rates multiplied by 

probability function, and the definition of ∆  compensates for the term inside the 

multiplication procedure.     

 

References 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013                                                               165 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

[1] A. A. Selman, "Neutron Induced Preequilibrium Nuclear Reactions Using the 

Exciton Model", Ph.D. Thesis, University of Baghdad (2009). 

[2] A. A. Selman, "Preequilibrium Nuclear Reactions Using the Exciton Model 

Review and Applications", 1st Ed., LAP Lambert Academic Pub. GmbH, (2012).  

[3] A. A. Selman, "The Exciton Model Part I. Basic Calculations of Nuclear Level 

Density", 1st Ed., LAP Lambert Academic Pub. GmbH, (2012). 

[4] J. J. Griffin, “Statistical Model of Intermediate Structure”, Phys. Rev. Lett., 

17(1966)478. 

 [5] M. H. Jasim, S. S. Sahik and A. A. Selman, " A Suggested Numerical Solution for 

the Master Equation of Nuclear Reaction", J. Kerbala Uni., 7,(2009) 271-282. 

[6] M. Herman, G. Reffo, and C. Costa, "Early Stage Equilibrium Dynamics in a 

Two-Component Nuclear System", Phys. Rev. UC39 U(1989) 1269. 

[7] J. Dobeš and E. Bĕták, "Fast and Precise Exciton Model Calculations of the 

Nuclear Reactions", Z. Phys. A288 (1978)175. 

[8] F. J. Luider, “Note on the Solution of the Master Equation in the Exciton Model of 

Preequilibrium Theory”,   Z. Phys. UA284 U (1987)187. 

[9] J. Dobeš and E. Bĕták, “Two-Component Exciton Model”, Z. Phys. A310 

(1983)329.  

[10] M. Blann, “Extension of Griffin’s model for medium-energy nuclear reactions”, 

Phys. Rev. Lett. 18(1968)1357, 

[11] M. Blann, “Hybrid Mode for Pre-Equilibrium Decay in Nuclear Reactions”, 

Phys. Rev. Lett. 27(1971)337 

  

  

 

  

IJSER

http://www.ijser.org/

	A Note on Integro-Differential Explicit Method of the Master Equation Solution
	Abstract
	A new theoretical approach is presented for solving the master equation of nuclear preequilibrium states, based on an explicitly integrated method. Earlier ad hoc hypothesis was proposed to follow mathematical derivation of the master equation reasona...
	1. UIntroduction
	The preequilibrium models represent a group of models that try to describe the intermediate nuclear reactions based on the contribution weight of many statistical states in each reaction channel. A model with significance is the exciton model [1TU1-4U...
	2. Theory: The Integro-Differential Master Equation
	UReferences



